Oil & Gas Industry
The Practical Guide to Surface Science (2024)

Written by Xavier Sethu | Reviewed By Dr Alidad Amirfazli |

This is a practical guide to Surface Science for researchers working in the Oil & Gas Industry.

In this all-new guide you’ll learn all about:

  • Crucial surface science principles
  • The significance of surface science measurements for the Oil & Gas industry
  • Applicable ASTM Standards & Guidelines

Let’s dive right in.

Contents

Chapter 1: Introduction

The oil and gas industry relies heavily on precise surface property measurements. They actively measure properties like surface tension, sliding angle, surface energy, and contact angle to optimize various applications, including

 

 

We use the important surface properties below to understand the behavior of Oil & Gas products and improve their quality.

Chapter 2: Contact Angle Measurement

The contact angle quantifies the wettability of a surface by representing the angle between a liquid’s surface and a solid surface.
Sample Image is taken from Droplet Lab Tensiometer.
Droplet Lab offers both Young-Laplace and Polynomial methods in our Tensiometer.

Young – Laplace Method

Polynomial Method

Dynamic Contact Angle

Ideally, when we place a drop on a solid surface, a unique angle exists between the liquid and the solid surface. We can calculate the value of this ideal contact angle (the so-called Young’s contact angle) using Young’s equation. In practice, due to surface geometry, roughness, heterogeneity, contamination, and deformation, the contact angle value on a surface is not necessarily unique but falls within a range. We call this range’s upper and lower limits the advancing contact angle and the receding contact angle, respectively. The values of advancing and receding contact angles for a solid surface are also very sensitive. They can be affected by many parameters, such as temperature, humidity, homogeneity, and minute contamination of the surface and liquid. For example, the advancing and receding contact angles of a surface can differ at different locations.

Dynamic Contact Angle versus Static Contact Angle

Practical surfaces and coatings naturally show contact angle hysteresis, indicating a range of equilibrium values. When we measure static contact angles, we get a single value within this range. Solely relying on static measurements poses problems, like poor repeatability and incomplete surface assessment regarding adhesion, cleanliness, roughness, and homogeneity.

In practical applications, we need to understand a surface’s liquid spreading ease (advancing angle) and removal ease (receding angle), such as in painting and cleaning. Measuring advancing and receding angles offers a holistic view of liquid-solid interaction, unlike static measurements, which yield an arbitrary value within the range.

This insight is crucial for real-world surfaces with variations, roughness, and dynamics, aiding industries like cosmetics, materials science, and biotechnology in designing effective surfaces and optimizing processes.

Learn how Contact Angle measurement is done on our Tensiometer

For a more complete understanding of Contact Angle measurement, read our Contact Angle measurement: The Definitive Guide

Chapter 3: Surface Tension Measurement

This property measures the force that acts on the surface of a liquid, aiming to minimize its surface area.

Sample Image is taken from Droplet Lab Tensiometer

Dynamic Surface Tension

Dynamic surface tension differs from static surface tension, which refers to the surface energy per unit area (or force acting per unit length along the edge of a liquid surface).

Static surface tension characterizes the equilibrium state of the liquid interface, while dynamic surface tension accounts for the kinetics of changes at the interface. These changes could involve the presence of surfactants, additives, or variations in temperature, pressure, and composition at the interface.

When to use Dynamic Surface Tension Measurement

Dynamic surface tension is essential for processes that involve rapid changes at the liquid-gas or liquid-liquid interface, such as droplet and bubble formation or coalescence (change of surface area), behavior of foams, and drying of paints (change of composition, e.g., evaporation of solvent). We measure it by analyzing the shape of a hanging droplet over time.

Dynamic surface tension applies to various industries, including cosmetics, coatings, pharmaceuticals, paint, food and beverage, and industrial processes, where understanding and controlling the behavior of liquid interfaces is essential for product quality and process efficiency.

Learn how Surface Tension measurement is done on our Tensiometer

For a more complete understanding of Surface Energy measurement, read our Surface Tension measurement: The Definitive Guide

Chapter 4: Surface Energy Measurement

Surface energy refers to the energy required to create a unit area of a new surface.
Sample Image is taken from Droplet Lab Tensiometer

Learn how Surface Energy measurement is done on our Tensiometer

For a more complete understanding of Surface Energy measurement, read our Surface Energy measurement: The Definitive Guide

Chapter 5: Sliding Angle Measurement

The sliding angle measures the angle at which a liquid film slides over a solid surface. It is commonly employed to assess the slip resistance of a surface.

Sample Image is taken from Droplet Lab Tensiometer

Learn how Sliding Angle measurement is done on our Tensiometer

For a more complete understanding of Sliding Angle measurement, read our Sliding Angle Measurement: The Definitive Guide

Chapter 6: Real-World Applications

Within the Oil & Gas industry, several case studies exemplify the advantages of conducting surface property measurements.

Enhanced Water-Oil Separation

Offshore oil platforms face a challenge: their production stream contains significant water that forms a stubborn emulsion with the crude oil due to high surface tension. To break this unwanted bond, engineers actively lower surface tension using carefully chosen surfactants. By measuring contact angle and surface energy, they precisely select the most effective chemicals. This targeted approach improves emulsion destabilization, leading to more efficient water-oil separation and significantly reduced energy consumption during processing.

Polymer Flooding

In a mature oil reservoir, researchers actively employ Enhanced Oil Recovery (EOR) methods to squeeze out more oil. To assess the reservoir rock’s wettability, they precisely measure contact angles. Their discovery of mixed wettability characteristics in the rock leads them to utilize surface energy measurements to design a more effective EOR strategy. By altering the contact angle with specific surfactants or polymers, they modify the interaction between the reservoir rock and injected fluids, ultimately increasing oil recovery.

Offshore Pipeline Protection

Offshore pipelines face the wrath of harsh seawater, leading to corrosion and a shortened lifespan. To combat this, engineers actively apply hydrophobic coatings to the pipeline surfaces. Sliding angle measurements play a crucial role in evaluating the performance of these coatings. By achieving a low sliding angle, the coatings effectively repel water, significantly reducing the risk of corrosion and extending the pipeline’s life. This proactive approach also reduces maintenance costs in the long run. 

Exploration and Production

Surface property measurements actively unlock the secrets of reservoir rocks and their fluids. By analyzing these properties, engineers precisely determine the best drilling and production techniques to maximize efficiency and success. Furthermore, surface property measurements play a crucial role in optimizing the drilling mud and cement used to seal the wellbore, ensuring safe and reliable operations.

Enhanced Oil Recovery

In enhanced oil recovery techniques like surfactant flooding, engineers actively utilize surface property measurements to optimize the process. They reduce surface tension between oil and water using surfactants, allowing for easier oil recovery. These measurements help them determine the ideal surfactant concentration and continuously monitor the effectiveness of the surfactant flooding process.

We are your partners in solving your Business & Technological challenges

If you are interested in implementing these or any other applications, please contact us.

Chapter 7: Standards and Guidelines

In an industry where precision reigns supreme, where do Oil & Gas manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.

ASTM D5946 Paints and varnishes — Wettability — Part 1

Terminology and general principles. General terms, definitions, and general principles for wettability can be utilized with the help of this standard. 

Now It’s Your Turn

We hope this guide showed you how to apply surface science in cosmetics industry.

Now we’d like to turn it over to you: 

Either way, let us know by leaving a comment below right now

Leave a Reply

Your email address will not be published. Required fields are marked *

Download Experiment